博客
关于我
Torch和Numpy——查看形状类型
阅读量:555 次
发布时间:2019-03-09

本文共 621 字,大约阅读时间需要 2 分钟。

基于PyTorch和NumPy的数组操作示例

代码解析与输出结果

import numpy as npimport torch# 创建numpy配准数组a = np.array([[1, 2], [3, 4]])print("numpy数组基本信息", a.shape, np.shape(a), a.dtype)print("----------------------------")# 将numpy数组转换为PyTorch tensorb = torch.tensor([[1, 2], [3, 4]])print("PyTorch tensor基本信息", b.shape, b.size(), b.type())print("-------------------------------------------------")# 将PyTorch tensor转换为浮点类型b = b.float()print("转换后的PyTorch tensor类型", b.dtype)

运行结果说明

运行上述代码可获得以下结果:

  • Numpy数组显示出:

    • 数据维度为2x2
    • 元素类型为int32
  • PyTorch tensor显示出:

    • 数据维度同样为2x2
    • 元素类型为LongTensor
    • 转换为float类型后,数据类型变为float32
  • 这个简单的示例展示了PyTorch与NumPy在数组操作方面的一些核心差异,包括数据类型和内存管理。

    转载地址:http://mdypz.baihongyu.com/

    你可能感兴趣的文章
    Nginx + uWSGI + Flask + Vhost
    查看>>
    Nginx - Header详解
    查看>>
    Nginx Location配置总结
    查看>>
    Nginx upstream性能优化
    查看>>
    Nginx 中解决跨域问题
    查看>>
    Nginx 动静分离与负载均衡的实现
    查看>>
    Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>
    Nginx 反向代理配置去除前缀
    查看>>
    nginx 后端获取真实ip
    查看>>
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>
    nginx 常用配置记录
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    Nginx 的 proxy_pass 使用简介
    查看>>
    Nginx 的配置文件中的 keepalive 介绍
    查看>>
    Nginx 负载均衡与权重配置解析
    查看>>
    Nginx 负载均衡详解
    查看>>
    nginx 配置 单页面应用的解决方案
    查看>>
    nginx 配置~~~本身就是一个静态资源的服务器
    查看>>
    Nginx下配置codeigniter框架方法
    查看>>