博客
关于我
Torch和Numpy——查看形状类型
阅读量:555 次
发布时间:2019-03-09

本文共 621 字,大约阅读时间需要 2 分钟。

基于PyTorch和NumPy的数组操作示例

代码解析与输出结果

import numpy as npimport torch# 创建numpy配准数组a = np.array([[1, 2], [3, 4]])print("numpy数组基本信息", a.shape, np.shape(a), a.dtype)print("----------------------------")# 将numpy数组转换为PyTorch tensorb = torch.tensor([[1, 2], [3, 4]])print("PyTorch tensor基本信息", b.shape, b.size(), b.type())print("-------------------------------------------------")# 将PyTorch tensor转换为浮点类型b = b.float()print("转换后的PyTorch tensor类型", b.dtype)

运行结果说明

运行上述代码可获得以下结果:

  • Numpy数组显示出:

    • 数据维度为2x2
    • 元素类型为int32
  • PyTorch tensor显示出:

    • 数据维度同样为2x2
    • 元素类型为LongTensor
    • 转换为float类型后,数据类型变为float32
  • 这个简单的示例展示了PyTorch与NumPy在数组操作方面的一些核心差异,包括数据类型和内存管理。

    转载地址:http://mdypz.baihongyu.com/

    你可能感兴趣的文章
    Notadd —— 基于 nest.js 的微服务开发框架
    查看>>
    NOTE:rfc5766-turn-server
    查看>>
    Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
    查看>>
    Notepad++在线和离线安装JSON格式化插件
    查看>>
    notepad++最详情汇总
    查看>>
    notepad++正则表达式替换字符串详解
    查看>>
    notepad如何自动对齐_notepad++怎么自动排版
    查看>>
    Notes on Paul Irish's "Things I learned from the jQuery source" casts
    查看>>
    Notification 使用详解(很全
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    NotImplementedError: Could not run torchvision::nms
    查看>>
    nova基于ubs机制扩展scheduler-filter
    查看>>
    Now trying to drop the old temporary tablespace, the session hangs.
    查看>>
    nowcoder—Beauty of Trees
    查看>>
    np.arange()和np.linspace()绘制logistic回归图像时得到不同的结果?
    查看>>
    np.power的使用
    查看>>
    NPM 2FA双重认证的设置方法
    查看>>
    npm build报错Cannot find module ‘webpack/lib/rules/BasicEffectRulePlugin‘解决方法
    查看>>
    npm build报错Cannot find module ‘webpack‘解决方法
    查看>>
    npm ERR! ERESOLVE could not resolve报错
    查看>>